Prediction of disulfide connectivity from protein sequences.
نویسندگان
چکیده
The difficulties in predicting disulfide connectivity from protein sequences lie in the nonlocal properties of the disulfide bridges that involve cysteine pairs at large sequence separation. Though some progress has been recently made in the prediction of disulfide connectivity, the current methods predict less than half of the disulfide patterns for the data set sharing less than 30% sequence identity. In this report, we use the support vector machines based on sequence features such as the coupling between the local sequence environments of cysteine pair, the cysteines sequence separations, and the global sequence descriptor, such as amino acid content. Our approach is able to predict 55% of the disulfide patterns of proteins with two to five disulfide bridges, which is 11-26% higher than other methods in the literature.
منابع مشابه
Cysteine separations profiles on protein sequences infer disulfide connectivity
MOTIVATION Disulfide bonds play an important role in protein folding. A precise prediction of disulfide connectivity can strongly reduce the conformational search space and increase the accuracy in protein structure prediction. Conventional disulfide connectivity predictions use sequence information, and prediction accuracy is limited. Here, by using an alternative scheme with global informatio...
متن کاملPredicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure
MOTIVATION Disulfide bonds are primary covalent crosslinks between two cysteine residues in proteins that play critical roles in stabilizing the protein structures and are commonly found in extracy-toplasmatic or secreted proteins. In protein folding prediction, the localization of disulfide bonds can greatly reduce the search in conformational space. Therefore, there is a great need to develop...
متن کاملPrediction of Disulfide Connectivity Patterns from Protein Sequence
A new computational method is introduced to predict disulfide connectivity patterns in a protein chain, starting with the assumption that the disulfide bonding state of each cysteine is known. The method uses support vector machines based on the pairwise local similarities between cyteineneighboring sequences and the distance between the cysteine pair under consideration. According to the exper...
متن کاملImproving the accuracy of predicting disulfide connectivity by feature selection
Disulfide bonds are primary covalent cross-links formed between two cysteine residues in the same or different protein polypeptide chains, which play important roles in the folding and stability of proteins. However, computational prediction of disulfide connectivity directly from protein primary sequences is challenging due to the nonlocal nature of disulfide bonds in the context of sequences,...
متن کاملPrediction of Oxidation States of Cysteines and Disulphide Connectivity
Knowledge on cysteine oxidation state and disulfide bond connectivity is of great importance to protein chemistry and 3-D structures. This research is aimed at finding the most relevant features in prediction of cysteines oxidation states and the disulfide bonds connectivity of proteins. Models predicting the oxidation states of cysteines are developed with machine learning techniques such as S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proteins
دوره 61 3 شماره
صفحات -
تاریخ انتشار 2005